

Упругие свойства редкоземельных станнатов R₂Sn₂O₇ и цирконатов R₂Zr₂O₇: ab initio paсчет

Глухов Кирилл Ильич*, Чернышев Владимир Артурович, Никулин Константин Георгиевич *glukhovk172@yandex.ru

Кристаллы со структурой пирохлора R₂B₂O₇ (R – редкоземельный ион, B – Ti, Ge, Zr, Sn, Mo), в том числе станнаты и цирконаты, привлекают внимание благодаря многообразию свойств и потенциальному применению в качестве люминофоров [1-4].

La Ce Pr NdPmSmEu Gd Tb Dy Ho Er Tm Yb Lu

Зависимость объема ячейки от давления,

описываемая уравнением состояния

Берча-Мурнагана 3-го порядка для

Gd₂Sn₂O₇ и Y₂Sn₂O₇

Pressure, GPa

Pressure, GPa

График расхождения значений постоянной

решетки и ширины запрещенной щели с

экспериментальными данными для станната

гадолиния $Gd_2Sn_2O_7$

(Квадратики для Gd₂Sn₂O₇ — эксперимент [12])

 $Gd_2Sn_2O_7$

B = 177.57 GPa

 $V_0 = 1164.1 \text{ Å}^3$

10

 $Y_2Sn_2O_7$

B = 189.26 GPa

 $V_0 = 1128.0 \text{ Å}^3$

B' = 4.04

12

●PBE(0)

12

16

B' = 4.95

300

250

200

150

100

50

1.00

0.98

0.96

0.94

1,00 ·

0,98

0,96

0,94

0

0///

0

0/I/0

(ГПа)

Ипругие постоянные

Редкоземельные станнаты и цирконаты R₂B₂O₇ (R=La-Lu,Y; B=Sn,Zr) имеют структуру пирохлора, пространственная группа (по. 227). Ионы находятся в позициях: Sn – 16c (0,0,0), Y (R) – 16d (1/2,1/2,1/2). Кислород находится в двух симметрично неэквивалентных позициях: О1 -48f(x, 1/8, 1/8), O2 - 8b(3/8, 3/8, 3/8).

Диаграммы сравнения абсолютных значений и расхождения с экспериментом упругих постоянных и твердости по Виккерсу (ГПа) R₂Sn₂O₇ для функционалов РВЕО и РВЕО-D3

ТЕОРИЯ ФУНКЦИОНАЛА ПЛОТНОСТИ (DFT) $E^{DFT}[\rho(r)] = T[\rho(r)] + E[\rho(r)] + J[\rho(r)] + E_{XC}[\rho(r)]$

Расчеты выполнены в рамках теории функционала плотности (DFT) с гибридным функционалами, учитывающим вклад нелокального обмена в формализме Хартри-Фока.

Расчеты были проведены в программе CRYSTAL17 [5], предназначенной для моделирования периодических структур в рамках МО ЛКАО подхода.

Изменение упругих постоянных	Постоянная решетки и ширина запрещенной щели Gd ₂ Sn ₂ O ₇							
R ₂ Zr ₂ O ₇ в ряду R=La-Lu С11	Параметр	4f-оболочка учтена явно		4f-оболочка заменена на псевдопотенциал	эксп. [10]			
		(PBEO)	(PBEO-D3)	(PBEO)				
	Постоянная решетки, Å	10.478	10.454	10.519	10.460			
	Ширина запрещенной щели, эВ	5.4702	5.5507	5.3855	-			

Результаты расчета упругих постоянных и упругих модулей (ГПа) кристаллов R₂Zr₂O₇(R=La-Lu), а также твердость и отношение Пуассона

La 269 106 89 160 86 218 (175±11) 10.6 (9.9±0.4) 0.27 Ce 273 105 89 161 87 220 10.8 0.27 Pr 276 104 88 161 87 222 10.8 0.27 Nd 279 104 88 161 87 223 (219) 10.9 (10) 0.27 Pm 282 103 88 162 88 223 (219) 10.9 (10) 0.27 Pm 282 103 88 162 88 224 10.9 0.27 Sm 284 102 87 163 89 (90) 225 (231) 11.1 (11) 0.27 Gd 289 101 86 164 89 (80) 226 (205) 11.0 (10) 0.27 Gd 289 100 85 164 89 227 10.9 0.27 Dy 294 100 85 165 89 227 10.9 0.27 Ho 296 99 <		R	C ₁₁	C ₁₂	C ₄₄	В	G	E	H _v	U
Ce 273 105 89 161 87 220 10.8 0.27 Pr 276 104 88 161 87 222 10.8 0.27 Nd 279 104 88 162 88 (86) 223 (219) 10.9 (10) 0.27 Pm 282 103 88 162 88 82 10.9 0.27 Pm 282 103 88 162 88 224 10.9 0.27 Pm 282 103 88 162 88 224 10.9 0.27 Sm 284 102 87 163 89 (90) 225 (231) 11.1 (11) 0.27 Gd 289 101 86 164 89 (80) 226 (205) 11.0 (10) 0.27 Gd 289 101 85 164 89 227 10.0 0.27 Dy 294 100 85 165 89 227 10.9 0.27 Ho 296 99 84 165 </th <th>•</th> <th>La</th> <th>269</th> <th>106</th> <th>89</th> <th>160</th> <th>86</th> <th>218 (175±11)</th> <th>10.6 (9.9±0.4)</th> <th>0.27</th>	•	La	269	106	89	160	86	218 (175±11)	10.6 (9.9±0.4)	0.27
Pr 276 104 88 161 87 222 10.8 0.27 Nd 279 104 88 162 88 (86) 223 (219) 10.9 (10) 0.27 Pm 282 103 88 162 88 224 10.9 0.27 Sm 284 102 87 163 89 (90) 225 (231) 11.1 (11) 0.27 Gd 287 102 87 163 89 (90) 225 (231) 11.1 (11) 0.27 Gd 289 101 86 164 89 (80) 226 (205) 11.0 (10) 0.27 Dy 292 100 85 164 89 227 11.0 (10) 0.27 Ho 296 99 84 165 89 227 10.9 0.27 Ho 296 99 84 165 89 227 10.9 0.27 Ho 296 99 84 165 89 227 10.9 0.27 Ho 296 99 84 </th <th></th> <th>Се</th> <th>273</th> <th>105</th> <th>89</th> <th>161</th> <th>87</th> <th>220</th> <th>10.8</th> <th>0.27</th>		Се	273	105	89	161	87	220	10.8	0.27
Nd 279 104 88 162 88 (86) 223 (219) 10.9 (10) 0.27 (0.27) Pm 282 103 88 162 88 224 10.9 0.27 Sm 284 102 87 163 89 (90) 225 (231) 11.1 (11) 0.27 Eu 287 102 87 163 89 (90) 225 (231) 11.1 (11) 0.27 Gd 289 101 86 164 89 (80) 226 (205) 11.0 (10) 0.27 Gd 289 100 85 164 89 227 11.0 (10) 0.27 Dy 294 100 85 165 89 227 10.9 0.27 Ho 296 99 84 165 89 227 10.9 0.27 Ho 296 99 84 165 89 227 10.9 0.27 Ho 296 99 84 165 89 227 10.9 0.27		Pr	276	104	88	161	87	222	10.8	0.27
Pm 282 103 88 162 88 224 10.9 0.27 Sm 284 102 87 163 89 (90) 225 (231) 11.1 (11) 0.27 Eu 287 102 87 163 89 (90) 225 (231) 11.1 (11) 0.27 Gd 289 102 87 163 89 (80) 226 (205) 11.0 (10) 0.27 Gd 289 101 86 164 89 (80) 226 (205) 11.0 (10) 0.27 Dy 294 100 85 164 89 227 10.9 0.27 Ho 296 99 84 165 89 227 10.9 0.27 Ho 296 99 84 165 89 227 10.9 0.27		Nd	279	104	88	162	88 (86)	223 (219)	10.9 (10)	0.27 (0.27)
Sm 284 102 87 163 89 (90) 225 (231) 11.1 (11) 0.27 (0.28) Eu 287 102 87 163 89 (90) 225 (231) 11.1 (11) 0.27 (0.28) Gd 289 102 87 163 89 (80) 226 (205) 11.0 (10) 0.27 (0.28) Tb 292 100 85 164 89 (80) 226 (205) 11.0 (10) 0.27 (0.28) Dy 292 100 85 164 89 227 11.0 (10) 0.27 (0.28) Ho 296 99 84 165 89 227 10.9 0.27 Ho 296 99 84 165 89 227 10.9 0.27 Ho 296 99 84 165 89 227 10.9 0.27		Pm	282	103	88	162	88	224	10.9	0.27
Eu 287 102 87 163 89 226 11.1 0.27 Gd 289 101 86 164 89 (80) 226 (205) 11.0 (10) 0.27 Tb 292 100 85 164 89 (80) 226 (205) 11.0 (10) 0.27 Dy 292 100 85 164 89 227 11.0 0.27 Ho 296 99 84 165 89 227 10.9 0.27 Fr 290 98 82 165 89 227 10.9 0.27 Ho 296 99 84 165 89 227 10.9 0.27		Sm	284	102	87	163	89 (90)	225 (231)	11.1 (11)	0.27 (0.28)
Gd 289 101 86 164 89 (80) 226 (205) 11.0 (10) 0.27 Tb 292 100 85 164 89 227 11.0 0.27 Dy 294 100 85 165 89 227 10.9 0.27 Ho 296 99 84 165 89 227 10.9 0.27 Fr 290 98 82 165 89 227 10.9 0.27		Eu	287	102	87	163	89	226	11.1	0.27
Tb 292 100 85 164 89 227 11.0 0.27 Dy 294 100 85 165 89 227 10.9 0.27 Ho 296 99 84 165 89 227 10.9 0.27 Fr 290 98 82 165 89 227 10.0 0.27		Gd	289	101	86	164	89 (80)	226 (205)	11.0 (10)	0.27 (0.28)
Dy 294 100 85 165 89 227 10.9 0.27 Ho 296 99 84 165 89 227 10.9 0.27 Fr 299 98 82 165 89 227 10.9 0.27		Tb	292	100	85	164	89	227	11.0	0.27
Ho 296 99 84 165 89 227 10.9 0.27 Fr 299 98 82 165 89 227 10.9 0.27		Dy	294	100	85	165	89	227	10.9	0.27
Er 200 08 82 165 80 227 100 027		Но	296	99	84	165	89	227	10.9	0.27
<u> </u>		Er	299	98	83	165	89	227	10.9	0.27
Tm 301 98 82 165 89 227 10.9 0.27		Tm	301	98	82	165	89	227	10.9	0.27
Yb 303 97 81 166 89 226 10.9 0.27		Yb	303	97	81	166	89	226	10.9	0.27
Lu 304 98 80 166 89 226 10.9 0.27		Lu	304	98	80	166	89	226	10.9	0.27

Упругие постоянные, объемный модуль и твердость по Виккерсу (ГПа) для Gd₂Sn₂O₇

					олочка		Расхо	кдение рас	чета с эі	кспериме	ентом, %	ы, эВ	●M06HF(100)
	4т-оболочка учтена явно		нт-оболочка учтена явно заменена на			Эксперимент	A			4f-об	ной щел -		
				псевдопотенциал [13] 41-оболочка учтена явно				а явно	заме	Цені			
	(PBEO)	(PBEO-	(M05)	(PBEO)	(PBE)	[==]				псевдог	отенциал	апрег	
	(******/	D3)			(/		(PBEO)	(PBEO-D3)	(M05)	(PBEO)	(PBE)	ее 4-	
C ₁₁	332	341	336	313	276	334	-0.5	2.1	0.6	-6.2	-17.4	нидиг	
C ₁₂	110	116	112	110	93	122	-9.7	-4.9	-8.2	-10.2	-23.8	ний ц	
C ₄₄	103	107	104	98	84	106	-2.4	0.9	-1.9	-7.9	-20.8	аначе - 2	
В	184	191	187	177	154	193	-4.6	-1.0	-3.1	-8.1	-20.2	ения	●PBEC ●B1WC(
$H_{\rm V}$	13.4	13.0	12.9	12.3	11.3	12.4	8.3	4.8	4.0	-0.7	-8.9	ҐЖох: О −	●PBESOL

в скооках приведен эксперимент [17]

Упругие постоянные, модули сдвига и объемного сжатия, твердость (ГПа), универсальный индекс анизотропии А^u станната иттрия Y₂Sn₂O₇

	C ₁₁	C ₁₂	C ₄₄	B _V	Gv	B _R	G _R	H _v	Au
PBE0	336.9	111.5	97.3	186.6	103.4	186.6	102.9	12.5	0.026
PBE0-D3	346.4	117.4	100.9	193.8	106.4	193.8	105.9	12.5	0.019

Уравнение состояния Берча-Мурнагана 3-го порядка:

 $P = \frac{3}{2}B_0 \left(\nu^{-7/3} - \nu^{-5/3} \right) \left(1 + \frac{3}{4} (B' - 4) \left(\nu^{-2/3} - 1 \right) \right),$ где $\nu = V/V_0$

Твердость по Виккерсу [7]: $H_V = 0.92k^{1.137}G_H^{0.708}$, где $k = {G_H / B_H}$

Универсальный индекс анизотропии [14]: $A^U = 5 \frac{G_V}{G_P} + \frac{B_V}{B_P} - 6$

Условия механической стабильности [15]:

$C_{11} + 2C_{12} + P > 0$	
$C_{11} - C_{12} - 2P > 0$	
C ₄₄ – P > 0	

ЗАКЛЮЧЕНИЕ

Показано, что ab initio подход, расчеты в рамках DFT позволяют успешно воспроизводить упругие постоянные, упругие модули, а также твердость цирконатов и станнатов с редкоземельной подрешеткой. Расхождение расчета с экспериментом менее 10%, результатов ИСХОДЯ ИЗ экспериментальных данных, имеющихся для некоторых представителей ряда. Упругие постоянные станнатов и цирконатов в ряду La-Lu изменяются поразному: С₁₁ – увеличивается, а С₁₂ и С₄₄ – уменьшаются. Показано увеличение упругих модулей и анизотропии упругих свойств в ряду La-Lu.

Исследовано влияние гидростатического сжатия на структуру, упругие постоянные и упругие модули станнатов гадолиния и иттрия. Расчет предсказывает увеличение упругих постоянных и упругих модулей при 0,3 гидростатическом сжатии. Показано, что зависимость объема ячейки от давления хорошо описывается уравнением состояния Берча-Мурнагана 3-го порядка. Также были проверены условия механической стабильности станнатов гадолиния и иттрия при гидростатическом сжатии. Показано, что при гидростатическом сжатии твердость по Виккерсу и пластичность увеличиваются незначительно.

Упругие постоянные Gd₂Sn₂O₇ при гидростатическом сжатии

C _{ii} , GPa	0 GPa	3 GPa	6 GPa	9 GPa	12 GPa
C ₁₁	319	334	348	362	375
C ₁₂	112	122	131	139	148
C ₄₄	98	103	108	112	116
Объемный модуль, В	181	192	203	214	224
Модуль сдвига, G	100	104	108	112	115
Модуль Юнга, Е	253	264	275	285	294
Твердость по Виккерсу, Н _v	12.2	12.3	12.4	12.4	12.4
G/B (хрупкость [16])	0.552	0.542	0.532	0.523	0.513

•WC1LYP(16.6)

•M052X(56)M062X(54)

PBE0-13(33.3)

PBESOL0(25) •PBE0(25) •M06(27)

Упругие постоянные Y ₂ Sn ₂ O ₇ при гидростатическом сжатии										
C _{ii} , GPa	0 GPa	2 GPa	4 GPa	6 GPa	8 GPa	10 Gpa	12 GPa	14 GPa	16 GPa	
C ₁₁	337	347	356	366	375	384	394	402	411	
C ₁₂	112	117	123	129	134	140	145	151	156	
C ₄₄	97	101	104	107	110	113	115	118	120	
Объемный модуль, В	187	194	201	208	215	221	228	235	241	
Модуль сдвига, G	103	106	109	112	114	116	119	121	123	
Твердость по Виккерсу, Н _v	12.5	12.6	12.7	12.8	12.9	12.9	12.9	12.9	12.9	
G/B (хрупкость [16])	0.553	0.547	0.543	0.537	0.532	0.526	0.521	0.515	0.509	

Показана возможность заменять на псевдопотенциал внутренние оболочки редкоземельных ионов по 4f включительно. Показано, что для описания упругих свойств станнатов необходимо использовать гибридные функционалы и что учет поправки Гримме незначительно влияет на результаты расчета упругих свойств станнатов.

17. Vassen R., Cao X., Tietz F., Basu D., Stover D. // J. Am. Ceram. Soc. 2000. V. 83. P. 2023.

Frequency (cm⁻¹)